Nelson,
I've always used audio for both Volume and Tone. Here is a copied description from a google search on the topic. "westhost" or something...can't recall...but it's not mine:
Potentiometer Tapers
The taper (also called "law") of a pot is important. We need not worry with trimpots, since they are almost always linear, and I do not know of a supplier of anything other than linear trimpots. For all panel pots, we must be aware of the use the pot will have, and select the correct type accordingly.
The most common use of a pot in audio is as a volume control. Since our hearing has a logarithmic response to sound pressure, it is important that the volume control should provide a smooth variation from soft to loud, such that a given change in position of the pot causes the same sensation of volume change at all levels.
Figure 4 - Potentiometer Tapers
First, the term "taper" needs some explanation. In the early days, when an audio taper (logarithmic, or just log) was needed, the resistance element was indeed tapered, so that it provided a different resistivity at different settings. By changing the physical taper, it was possible to make a pot provide the exact gradient of resistance needed. By definition, a linear pot has no taper as such (the resistance element is parallel sided), but the term has stuck, so we might as well get used to it.
The violet curve in Figure 4 shows an antilog or reverse audio taper pot. These are quite uncommon, but used to be used for balance controls using a log/antilog dual section (commonly called dual gang) pot. It is shown on the graph mainly for its interest value, but they are generally an historical component now.
All this tapering proved a rather expensive exercise, so manufacturers economised ("they" won't notice the difference!), and worked out a method of using two resistance elements of differing resistivity, and joining them to create what I referred to as the "Commercial log" taper. In short, it doesn't work (not properly, anyway), and the discontinuity where the two sections join is almost always audible with cheap "log" pots.
Project 01 showed how this can be fixed, and I will explain the logic and maths a little more as we progress. In the meantime, I suggest that you get an old pot and dismantle it so that you can see exactly what is inside. I could show you some photos, but there is nothing like doing it yourself to really get to know the subject.
Pot Markings
Now, this should be dead easy - a simple code to indicate the resistance and law of a pot should cause no grief to anyone, right? Wrong! It wouldn't have been so bad if someone hadn't decided to change it, and even then, it wouldn't have been so bad if there was no overlap between the "old" and "new" "standards" ... I think you can see where this is headed by now.
Taper Old Code New Code Alternate
Linear A B LIN
Log (Audio) C A LOG
Antilog F N/A N/A
Wasn't that a nice thing to do? It is obviously important to check before you make assumptions, or you can easily get the wrong type - especially if working on older equipment.
At least the resistance marking is usually sensible, so a 100k pot will be marked as 100K - but not always. The coding system used for capacitors is sometimes used as well (especially on small trimpots), so a 100k pot could also be marked as 104 - 10, followed by 4 zeros, or 100000 (100k) ohms.
Because they are variable, there is a much smaller range of potentiometer values, almost always in a 1, 2.5, 5 sequence. Common values for panel pots are 1k, 5k, 10k, 25k, 50k, 100k, 500k and 1M - 2.5k and 250k went missing along the way, and these are not stocked by very many distributors. 25k pots are becoming harder to get as well. Not all values are available in log and linear, and in some cases you may even find that for a particular type, you can get them in any value you want, as long as it's 100k (for example).
Dave-SKG38907.5480671296